
Machine Learning-based Self-adjusting Concurrency
in Software Transactional Memory Systems

Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, Francesco Quaglia
DIAG, Sapienza Università di Roma

Abstract—Software Transactional Memories (STM) are a
promising paradigm for parallel programming on multicore
platforms. One of the problems of STM systems is the perfor-
mance degradation that can be experienced when applications
run with a non-optimal concurrency level, namely number
of concurrent threads. When this level is too high a loss of
performance may occur due to excessive data contention and
consequent transaction aborts. Conversely, if concurrency is too
low, the performance may be penalized due to limitation of both
parallelism and exploitation of available resources. In this paper
we will present an introduction to a complete work [1], which will
be published in the proceedings of the IEEE 20th International
Symposium on Modeling, Analysis and Simulation of Computer
And Telecommunication Systems (MASCOTS 2012), in which we
propose a machine-learning based approach which enables STM
systems to predict their performance as a function of the number
of concurrent threads in order to dynamically select the optimal
concurrency level during the whole lifetime of the application. In
our approach, the STM is coupled with a neural network and an
on-line control algorithm that activates or deactivates application
threads in order to maximize performance via the selection of
the most adequate concurrency level, as a function of the current
data access profile. A real implementation of our proposal within
the TinySTM open source package and an experimental study
relying on the STAMP benchmark suite has been realized. The
experimental data confirm how our self-adjusting concurrency
scheme constantly provides optimal performance, thus avoiding
performance loss phases caused by non-suited selection of the
amount of concurrent threads and associated with the above
depicted phenomena.

I. INTRODUCTION

Over the last decade multi-core systems have become
mainstream computing architectures. Systems with up to 16
or 32 CPU-cores can be purchased for a few thousands
dollars. This trend has lead to a growing need for the
development of applications which can effectively exploit
parallelism, thus bringing parallel programming out from the
niche of scientific and high-performance computing. Within
this context, Software Transactional Memories (STMs) [2]
have emerged as a programming paradigm tailored for the
development of concurrent applications. By leveraging on the
concept of atomic transactions, historically used in field of
database systems, STMs relieve programmers from the burden
of explicitly writing complex, error-prone thread synchroniza-
tion code. STMs provide a simple and intuitive program-
ming model, where programmers wrap critical-section code
within transactions, thus removing the need for using fine-
grained lock-based synchronization approaches. Programmers’
productivity is therefore improved, while not sacrificing the
advantages provided by high parallelism. Data conflicts are
handled within STMs by means of conflict detection and
management algorithms, and most of the literature work made

The work introduced in this paper is available at:
http://www.dis.uniroma1.it/∼rughetti/publications/mascots12.pdf

in this field has been aimed at designing increasingly effective
conflict detection and management schemes [3], [4], [5], [6],
[7]. None of the above approaches has been targeted at directly
controlling and optimizing the level of parallelism, which
would lead to the identification of suited values for the total
amount of threads sustaining the application as a function
of the workload profile. Increasing the number of concurrent
threads can speed-up the application as more transactions
(and more non-transactional code blocks) can be processed in
parallel. But increasing the number of concurrent transactions
typically causes an increase of the transaction conflict rate. As
a consequence, transactions may experience more abort/retry
phases, which give rise to an increase of the execution time. In
general, it is not convenient to have more active threads than
the available CPU-cores [8]. This is not sufficient to avoid
the loss of performance due to excessive data contention. The
choice of the well suited degree of concurrency is fundamental
in order to obtain adequate trade-offs between parallelism and
data conflict. Also, it is an orthogonal problem with respect to
the data contention management. By exclusively considering
the transaction rollback probability, several relevant parameters
having a real impact on the actual transaction execution latency
are not included, such as the workload profile of the running
application. We want present an approach relying on machine
learning, which also tackles the aforementioned shortcomings,
where we use a neural network [9] to enable the prediction
of the performance of STM applications as a function of the
concurrency level (by also indirectly capturing the workload
profile and hardware effects). The neural network is trained us-
ing a data set obtained by profiling the workload generated by
the application. Then, at run time, a statistical characterization
of the application workload is periodically generated, which is
used by a control algorithm as input to the neural network in
order to predict the wasted transaction execution times. These
predictions, are finally exploited by the control algorithm to
regulate the concurrency level with the aim at maximizing
the application throughput. To evaluate the effectiveness of
our self-adapting concurrency proposal, we have implemented
the whole architecture by leveraging on TinySTM[4] and we
have performed an extended experimental study by relying
on the STAMP benchmark suite[10]. By the experimental
data the overhead introduced by the implemented self-adaptive
concurrency functionalities (vs the baseline case) reveals al-
most negligible, which, together with the effectiveness of the
proposed machine-learning based prediction method, allow our
solution to provide optimal performance across the whole set
of tested workloads.

II. RELATED WORK

In [11] an analytical modeling approach has been proposed
to evaluate the performance of STM applications as a function



of the number of concurrent threads and other workload
configuration parameters. In this kind of approach a detailed
knowledge of the specific conflict detection and management
scheme used by the target STM is required, which is instead
not required by the approach we are currently proposing.
The work in [12] presents an analytical model taking as
input a workload characterization of the application expressed
in terms of transaction profiles, contention probability and
hardware resources consumption. The model prediction is
a representation of the average system behavior over the
whole lifetime of the application. Hence, differently from our
proposal, no ability to capture run-time variations is envisaged.
The proposal in [13] is targeted at evaluating scalability
aspects of STM systems. It relies on the usage of different
types of functions to approximate the performance of the
application when considering different amounts of concurrent
threads. The approximation process is based on measuring
the speed-up of the application over a set of runs, each
one executed with a different number of concurrent threads,
and then on calculating the proper function parameters by
interpolating the measurements. Differently from our proposal,
in this approach the workload profile of the application is not
taken into account, hence the prediction may prove unreli-
able when the profile gets changed wrt the one used during
interpolation phases. In [14] a control algorithm dynamically
changes the number of threads which can concurrently execute
transactions on basis of the observed transaction conflict rate.
In the approach proposed in [15], incoming transactions are
enqueued and sequentialized when an indicator, referred to as
contention intensity, exceeds a pre-established threshold. In the
proposal presented in [16], a transaction is sequentialized when
a potential conflict with other running transactions is predicted.
The prediction leverages on the estimation of the expected
transaction read-set and write-set. Compared to our approach,
all the above proposals do not directly estimate the wasted
time due to aborted transactions. They only indirectly attempt
to control the wasted time according to heuristics schemes. In
[17] machine learning techniques are used to select the best
performing conflict detection and management algorithm. In
[18], machine learning is used to select the most suitable CPU-
thread mapping. The goals of both these works are orthogonal
with respect to our one, which focus on the regulation of the
overall concurrency level in the system.

III. CONCLUSIONS AND FUTURE WORK

In this paper we presented an introduction to a complete
work, which will be published in the proceedings of the
IEEE 20th International Symposium on Modeling, Analysis
and Simulation of Computer And Telecommunication Systems
(MASCOTS 2012), that proposes a novel machine learning-
based solution addressing the problem of the dynamic selec-
tion of the optimal concurrency level in the context of STM
systems. We experimented our approach by implementing the
system architecture we introduced, thus building an STM
which can self-adjust the concurrency level by activating and
deactivating concurrent threads on the basis of the profile of
the current workload. In our evaluation experiments we used
applications selected from the STAMP benchmark suite. The
results we got are very promising, as they shown that, in most
of the cases, the performance achieved is, independently of the
maximum number of concurrent threads of the application,

close to the best case when using a fixed (optimal) number
of running threads. In particular, we observed that when
an application is executed with an overestimated number
of concurrent threads, our self-adjusting STM proves to be
able to reduce the concurrency level so to avoid the typical
performance degradation experienced with traditional (non-
self adjusting) STM systems.

REFERENCES

[1] Diego Rughetti, Pierangelo Di Sanzo, Bruno Ciciani, and Francesco
Quaglia. Machine learning-based self-adjusting concurrency in software
transactional memory systems. In Proceedings of the 20th IEEE
International Symposium On Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, 2012.

[2] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 204–213, New York, NY, USA, 1995.
ACM.

[3] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In In
Proc. of the 20th Intl. Symp. on Distributed Computing, 2006.

[4] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic per-
formance tuning of word-based software transactional memory. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, pages 237–246, New York, NY, USA,
2008. ACM.

[5] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architec-
tural support for lock-free data structures. SIGARCH Comput. Archit.
News, 21(2):289–300, May 1993.

[6] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and
Michael L. Scott. A comprehensive strategy for contention management
in software transactional memory. In Proceedings of the 14th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
pages 141–150, New York, NY, USA, 2009. ACM.

[7] Yossi Lev, Victor Luchangco, Virendra J. Marathe, Mark Moir, Dan
Nussbaum, and Marek Olszewski. Anatomy of a scalable software
transactional memory. In 2009, 4th ACM SIGPLAN Workshop on
Transactional Computing (TRANSACT09, 2009.

[8] Robert Ennals. Software transactional memory should not be
obstruction-free. Technical Report IRC-TR-06-052, Intel Research
Cambridge Tech Report, Jan 2006.

[9] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
[10] Chi C. Minh, Jaewoong Chung, C. Kozyrakis, and K. Olukotun. STAMP:

Stanford Transactional Applications for Multi-Processing. In Proceed-
ings of the IEEE International Symposium on Workload Characteriza-
tion, pages 35–46, Seattle, WA, USA, 2008.

[11] Pierangelo Di Sanzo, Bruno Ciciani, Roberto Palmieri, Francesco
Quaglia, and Paolo Romano. On the analytical modeling of concurrency
control algorithms for software transactional memories: The case of
commit-time-locking. Performance Evaluation, 69(5):187 – 205, 2012.

[12] Zhengyu He and Bo Hong. Modeling the run-time behavior of trans-
actional memory. In Modeling, Analysis Simulation of Computer and
Telecommunication Systems, 2010 IEEE International Symposium on,
pages 307 –315, aug. 2010.

[13] Aleksandar Dragojević and Rachid Guerraoui. Predicting the Scalability
of an STM: A Pragmatic Approach, 2010.

[14] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris
Kirkham, and Ian Watson. Advanced concurrency control for transac-
tional memory using transaction commit rate. In Proceedings of the
14th international Euro-Par conference on Parallel Processing, pages
719–728, Berlin, Heidelberg, 2008. Springer-Verlag.

[15] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling
for transactional memory systems. In Proceedings of the twentieth
annual symposium on Parallelism in algorithms and architectures, pages
169–178, New York, NY, USA, 2008. ACM.

[16] Aleksandar Dragojević, Rachid Guerraoui, Anmol V. Singh, and Vasu
Singh. Preventing versus curing: avoiding conflicts in transactional
memories. In Proceedings of the 28th ACM symposium on Principles of
distributed computing, pages 7–16, New York, NY, USA, 2009. ACM.

[17] Qingping Wang, Sameer Kulkarni, John V. Cavazos, and Michael Spear.
Towards applying machine learning to adaptive transactional memory.
In Proceedings of the 6th ACM SIGPLAN Workshop on Transactional
Computing, 2011.

[18] C.P Ribeiro M. Cole M. Cintra M. Castro, L.F. Wanderley-Goes and
J. Mehaut. A machine learning-based approach for thread mapping on
transactional memory applications. In Proceedings of the 18th Annual
International Conference on High Performance Computing, 2011.


